

FEATURES

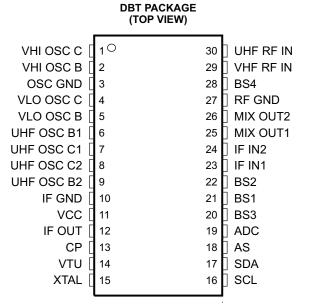
- Single-Chip Mixer/Oscillator and Phase-Locked Loop (PLL) Synthesizer
- Three-Band Local Oscillator
- I²C Bus Protocol (Bidirectional Data Transmission)
- 30-V Tuning Voltage Output
- Four NPN-Type Band-Switch Drivers
- Programmable Reference Divider Ratio (512, 640, or 1024)
- External 4-Pin Intermediate Frequency (IF)
 Filter Between Mixer Output and IF Amplifier
 Input
- 5-V Power Supply
- 30-Pin Thin Shrink Small-Outline Package (TSSOP)

APPLICATIONS

- TVs
- VCR/DVD Recorders

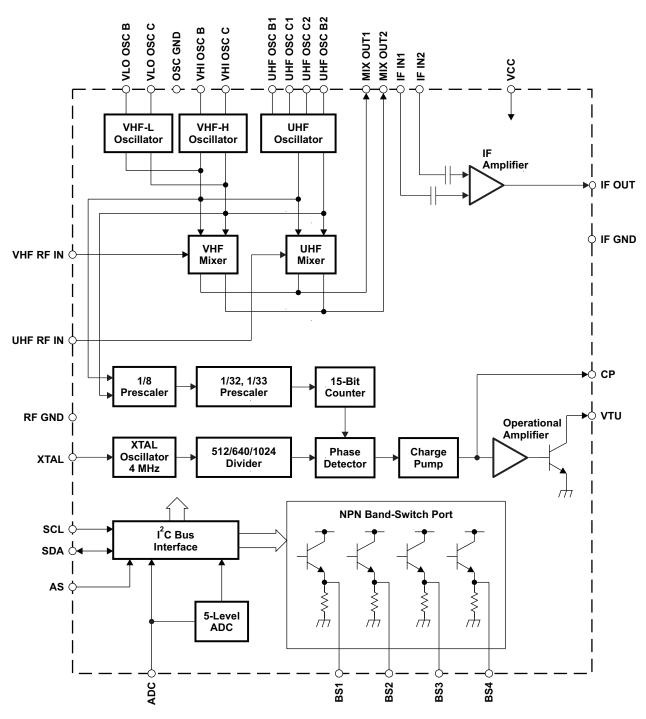
ratio for a crystal oscillator.

Set-Top Boxes


DESCRIPTION

The SN761678B is a synthesized tuner IC designed for TV tuning systems. The circuit consists of a phase-locked loop (PLL) synthesizer, three-band local oscillator and mixer, 30-V output tuning amplifier, and four NPN band-switch drivers. The device is available in a small-outline package. A 15-bit programmable counter and reference divider are controlled by I²C bus protocol. Tuning step frequency is selectable by this reference divider

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.


ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

P0038-01

FUNCTIONAL BLOCK DIAGRAM

B0089-02

Terminal Functions

TERMINAL		DECODINE	00050050
NAME	NO.	DESCRIPTION	SCHEMATIC
ADC	19	ADC input	Figure 1
AS	18	Address selection input	Figure 2
BS1	21	Band-switch 1 output (NPN emitter follower)	Figure 4
BS2	22	Band-switch 2 output (NPN emitter follower)	Figure 4
BS3	20	Band-switch 3 output (NPN emitter follower)	Figure 4
BS4	28	Band-switch 4 output (NPN emitter follower)	Figure 4
СР	13	Charge-pump output	Figure 5
IF GND	10	IF ground	
IF IN1	23	IF amplifier input 1	Figure 3
IF IN2	24	IF amplifier input 2	Figure 3
IF OUT	12	IF output	Figure 6
MIX OUT1	25	Mixer output 1	Figure 7
MIX OUT2	26	Mixer output 2	Figure 7
OSC GND	3	Oscillator ground	
RF GND	27	RF ground	
SCL	16	Serial clock input	Figure 8
SDA	17	Serial data input/output	Figure 9
UHF OSC B1	6	UHF oscillator base 1	Figure 10
UHF OSC B2	9	UHF oscillator base 2	Figure 10
UHF OSC C1	7	UHF oscillator collector 1	Figure 10
UHF OSC C2	8	UHF oscillator collector 2	Figure 10
UHF RF IN	30	UHF RF input	Figure 11
VCC	11	Supply voltage for mixer/oscillator/PLL: 5 V	
VHF RF IN	29	VHF RF input	Figure 12
VHI OSC B	2	VHF HIGH oscillator base	Figure 13
VHI OSC C	1	VHF HIGH oscillator collector	Figure 13
VLO OSC B	5	VHF LOW oscillator base	Figure 14
VLO OSC C	4	VHF LOW oscillator collector	Figure 14
VTU	14	Tuning voltage amplifier output	Figure 15
XTAL	15	4-MHz crystal oscillator input	Figure 16

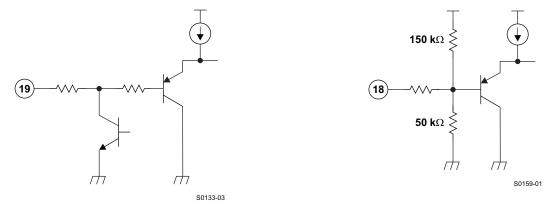
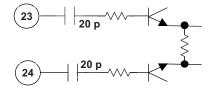



Figure 1. Figure 2.

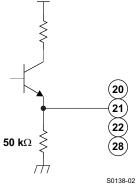


Figure 3.

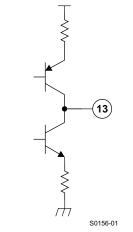


Figure 5.

Figure 7.

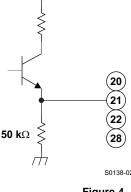


Figure 4.

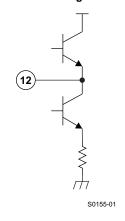


Figure 6.

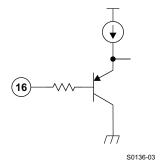
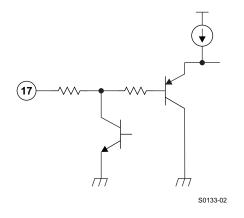
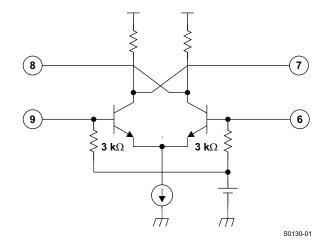
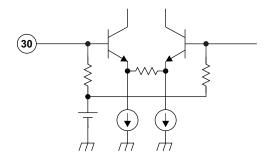
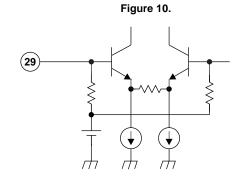
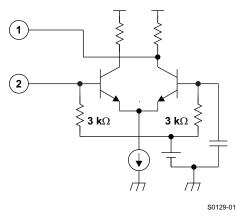



Figure 8.

S0142-04


Figure 9.

S0142-05

Figure 11.

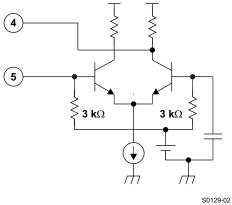


Figure 12.

Figure 13.

Figure 14.

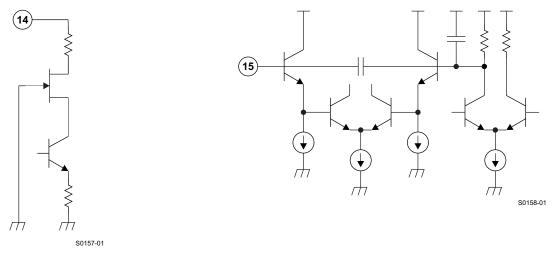


Figure 15. Figure 16.

Absolute Maximum Ratings

over operating free-air temperature range (unless otherwise noted) (1)

Supply voltage range, V _{CC} ⁽²⁾	VCC (pin 11)	-0.4 V to 6.5 V
Input voltage 1, V _{GND} ⁽²⁾	OSC GND, RF GND (pins 3, 27)	-0.4 V to 0.4 V
Input voltage 2, V _{VTU} ⁽²⁾	VTU (pin 14)	-0.4 V to 35 V
Input voltage 3, V _{IN} ⁽²⁾	Other pins (1, 2, 4–9, 12, 13, 15–26, 28–30)	-0.4 V to 6.5 V
Continuous total dissipation, P _D ⁽³⁾	T _A ≤ 25°C	1071 mW
Operating free-air temperature range, T _A	·	−20°C to 85°C
Storage temperature range, T _{stg}		-65°C to 150°C
Maximum junction temperature, T _J		150°C
Maximum short-circuit time, t _{SC(max)}	Each pin to V _{CC} or to GND	10 s

⁽¹⁾ Stresses beyond those listed under "absolute maximum ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under "recommended operating (2) Voltage values are with respect to the IF GND of the circuit.
 (3) Derating factor is 8.57 mW/°C for T_A ≥ 25°C.

Recommended Operating Conditions

		MIN	NOM	MAX	UNIT
Supply voltage, V _{CC}		4.5	5	5.5	٧
Tuning supply voltage, V _{TU}			30	33	V
Output current of band switch, I _{BS}	One port on			10	mA
Operating free-air temperature, T _A		-20		85	°C

Electrical Characteristics – Total Device and Serial Interface

 $\rm V_{\rm CC} = 4.5~V$ to 5.5 V, $\rm T_{\rm A} = -20^{\circ}C$ to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
I _{CC} 1	Supply current 1			60		mA
I _{CC} 2	Supply current 2	One band switch on (I _{BS} = 10 mA)		70		mA
V _{IH}	High-level input voltage (SCL, SDA)		2.8		V_{CC}	V
V _{IL}	Low-level input voltage (SCL, SDA)				1.4	V
I _{IH}	High-level input current (SCL, SDA)				10	μΑ
I _{IL}	Low-level input current (SCL, SDA)		-10			μΑ
V _{POR}	Power-on-reset supply voltage (threshold of supply voltage between reset and operation mode)		2.1	2.8	3.6	٧
I ² C Inter	face					
V _{ASH}	Address-select high-input voltage (AS)	V _{CC} = 5 V	4.5		5	V
V _{ASM1}	Address-select mid1-input voltage (AS)	V _{CC} = 5 V	2		3	V
V _{ASM2}	Address-select mid2-input voltage (AS)	V _{CC} = 5 V	1		1.5	V
V _{ASL}	Address-select low-input voltage (AS)	V _{CC} = 5 V			0.5	٧
I _{ASH}	Address-select high-input current (AS)	V _{CC} = 5 V, T _A = 25°C			140	μΑ
I _{ASL}	Address-select low-input current (AS)	V _{CC} = 5 V, T _A = 25°C	-50			μΑ
V _{ADC}	ADC input voltage	See Table 8	0		V_{CC}	V
I _{ADH}	ADC high-level input current	$V_{ADC} = V_{CC}$			10	μΑ
I _{ADL}	ADC low-level input current	V _{ADC} = 0 V	-50			μΑ
V _{OL}	Low-level output voltage (SDA)	$V_{CC} = 5 \text{ V}, I_{OL} = 3 \text{ mA}$			0.4	V
I _{SDAH}	High-level output leakage current (SDA)	V _{SDA} = 5.5 V			10	μΑ
f _{SCL}	Clock frequency (SCL)			100	400	kHz
	I ² C Timing (see Figure 17)					
t _{hd(DAT)}	Data hold time		0			μs
t _(BUF)	Bus free time		1.3			μs
t _{hd(STA)}	Start hold time		0.6			μs
t _(Low)	SCL-low hold time		1.3			μs
t _(High)	SCL-high hold time		0.6			μs
t _{su(STA)}	Start setup time		0.6			μs
t _{su(DAT)}	Data setup time		0.1			μs
t _r	SCL, SDA rise time				0.3	μs
t _f	SCL, SDA fall time				0.3	μs
t _{su(STO)}	Stop setup time		0.6			μs

Electrical Characteristics – PLL and Band Switch

 $\rm V_{\rm CC} = 4.5~V$ to 5.5 V, $\rm T_{\rm A} = -20^{\circ}C$ to 85°C (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT
N	Divider ratio	15-bit frequency word	256		32767	
f _{XTAL}	Crystal oscillator frequency	R_{XTAL} = 25 Ω to 300 Ω	3.2	4	4.48	MHz
Z _{XTAL}	Crystal oscillator input impedance		·	1.6		kΩ
V _{IXTAL2}	Minimum reference input sensitivity (XTAL)	4 MHz, ac coupling with 0.1-μF capacitor	·		100	mVp-p
V _{VTUL}	Tuning amplifier low-level output voltage	$R_L = 22 \text{ k}\Omega$, $V_{TU} = 33 \text{ V}$	·	0.4	0.5	V
I _{VTUOFF}	Tuning amplifier leakage current (off)	OS = 1, V _{TU} = 33 V	·		10	μΑ
I _{CPH}	Charge-pump high-level input current	CP = 1	·	280		μΑ
I _{CPL}	Charge-pump low-level input current	CP = 0	·	60		μΑ
V _{CP}	Charge-pump output voltage	PLL locked	·	1.95		V
I _{CPOFF}	Charge-pump leakage current	T2 = 0, T1 = 1, V _{CP} = 2 V, T _A = 25°C	-15		15	nA
I _{BS}	Band-switch driver output current		·		10	mA
V _{BS1}	David a vitale dei var autaut valta sa	I _{BS} = 10 mA	3			V
V _{BS2}	Band-switch driver output voltage	$I_{BS} = 10 \text{ mA}, V_{CC} = 5 \text{ V}, T_A = 25^{\circ}\text{C}$	3.5	3.9		V
I _{BSOFF}	Band-switch driver leakage current	V _{BS} = 0 V			3	μΑ

Electrical Characteristics – Mixer, Oscillator, IF Amplifier

 V_{CC} = 5 V, T_A = 25°C, measured in Figure 18 reference measurement circuit at 50- Ω system, IF filter characteristics: f_{peak} = 43 MHz (unless otherwise noted)

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNIT		
G _{c11}	Conversion gain 1 (mixer-IF amplifier),	f _{in} = 58 MHz ⁽¹⁾	22	25	28	dB		
G _{c13}	VHF-LOW	$f_{in} = 130 \text{ MHz}^{(1)}$	22	25	28	uБ		
G _{c14}	Conversion gain 1 (mixer-IF amplifier),	f _{in} = 136 MHz ⁽¹⁾	22	25	28	10		
G _{c16}	VHF-HIGH VHF-HIGH	f _{in} = 364 MHz ⁽¹⁾	22	25	28	dB		
G _{c17}		f _{in} = 370 MHz ⁽¹⁾	26	29	32			
G _{c19}	Conversion gain 1 (mixer-IF amplifier), UHF	f _{in} = 804 MHz ⁽¹⁾	25	28	31	dB		
G _{c21}	Conversion gain 2 (mixer-IF amplifier),	f _{in} = 58 MHz ⁽²⁾	16	19	22			
G _{c23}	VHF-LOW VHF-LOW	$f_{in} = 130 \text{ MHz}^{(2)}$	16	19	22	аВ		
G _{c24}	Conversion gain 2 (mixer-IF amplifier),	f _{in} = 136 MHz ⁽²⁾	16	19	22	dB		
G _{c26}	VHF-HIGH	f _{in} = 364 MHz ⁽²⁾	16	19	22	dB		
G _{c27}	0	f _{in} = 370 MHz ⁽²⁾	20	23	26	dB		
G _{c29}	Conversion gain 2 (mixer-IF amplifier), UHF	$f_{in} = 804 \text{ MHz}^{(2)}$	19	22	25	ав		
NF ₁	Naise Course MIETOW	f _{in} = 55.25 MHz		9.5		dB		
NF ₃	Noise figure, VHF-LOW	f _{in} = 127.25 MHz		9.5		ав		
NF ₄	N	f _{in} = 133.25 MHz		10		į		
NF ₆	Noise figure, VHF-HIGH	f _{in} = 361.25 MHz		10		dB		
NF ₇	Naise Course LUIE	f _{in} = 367.25 MHz		11		dB		
NF ₉	Noise figure, UHF	f _{in} = 801.25 MHz		11		ав		
CM ₁	40/ areas and disting distantian MIF LOW	f _{in} = 55.25 MHz ⁽³⁾		89		4D\/		
CM ₃	1% cross-modulation distortion, VHF-LOW	f _{in} = 127.25 MHz ⁽³⁾		89		dΒμV		
CM ₄	40/ grace modulation distortion \/\IETIICII	f _{in} = 133.25 MHz ⁽³⁾		86		4D//		
CM ₆	1% cross-modulation distortion, VHF-HIGH	f _{in} = 361.25 MHz ⁽³⁾		86		dΒμV		
CM ₇	10/ grace modulation distortion IIII	f _{in} = 367.25MHz ⁽³⁾		87		4D//		
CM ₉	1% cross-modulation distortion, UHF	$f_{in} = 801.25 \text{ MHz}^{(3)}$		87		dΒμV		
V _{IFO1}	IF output voltage VIIF LOW	f _{in} = 55.25 MHz ⁽⁴⁾		117		4D//		
V_{IFO3}	IF output voltage, VHF-LOW	f _{in} = 127.25 MHz ⁽⁴⁾		117		dΒμV		
V_{IFO4}	IF output voltage, VHF-HIGH	$f_{in} = 133.25 \text{ MHz}^{(4)}$		117		dBµV		
$V_{\rm IFO6}$	ir output voltage, vnr-nign	$f_{in} = 361.25 \text{ MHz}^{(4)}$		117				
$V_{\rm IFO7}$	IF output voltage IIIIF	$f_{in} = 367.25MHz^{(4)}$		117		4D:://		
V _{IFO9}	IF output voltage, UHF	$f_{in} = 801.25 \text{ MHz}^{(4)}$		117		dΒμV		
Φ_{OSC1}	Phase poice VHE LOW	f _{in} = 55.25 MHz ⁽⁵⁾		88		dBc/Hz		
Φ_{OSC3}	Phase noise, VHF-LOW	f _{in} = 127.25 MHz ⁽⁵⁾		88				
Φ_{OSC4}	Phase poice V/HE HICH	f _{in} = 133.25 MHz ⁽⁵⁾		86		dBc/Hz		
$\Phi_{\sf OSC6}$	Phase noise, VHF-HIGH	f _{in} = 361.25 MHz ⁽⁵⁾		86				
Φ_{OSC7}	Phase poice LIHE	f _{in} = 367.25MHz ⁽⁵⁾		84		dBc/U~		
$\Phi_{\sf OSC9}$	Phase noise, UHF	f _{in} = 801.25 MHz ⁽⁵⁾		84		dBc/Hz		
	Prescaler beat ⁽⁶⁾				25	dΒμV		

- (1) IF = 43 MHz, RF input level = 80 dBµV (see Figure 19)
- (2) IF = 43 MHz, RF input level = 80 dBμV (see Figure 19)
 (3) f_{undes} = f_{des} ±6 MHz, P_{in} = 80 dBμV, AM 1 kHz, 30%, DES/CM = S/I = 46 dB
 (4) IF = 45.75 MHz
- (5) Offset = 10 kHz, RF input level = 70 dB μ V
- (6) Design parameter, not tested

FUNCTIONAL DESCRIPTION

I²C Bus Mode

I^2C Write Mode (R/ $\overline{W} = 0$)

Table 1. Write Data Format

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	MA1	MA0	$R/\overline{W} = 0$	A ⁽¹⁾
Divider byte 1 (DB1)	0	N14	N13	N12	N11	N10	N9	N8	A ⁽¹⁾
Divider byte 2 (DB2)	N7	N6	N5	N4	N3	N2	N1	N0	A ⁽¹⁾
Control byte (CB)	1	CP	T2	T1	T0	RSA	RSB	os	A ⁽¹⁾
Band-switch byte (BB)	Х	Х	Х	Х	BS4	BS3	BS2	BS1	A ⁽¹⁾

⁽¹⁾ A = Acknowledge

Table 2. Write Data Symbol Description

SYMBOL	DESCRIPTION	DEFAULT
MA[1:0]	Address-set bits (see Table 3)	
	Programmable counter set bits	
N[14:0]	$N = N14 \times 2^{14} + N13 \times 2^{13} + + N1 \times 2 + N0$ Oscillation frequency = $f_r \times 8 \times N$ $f_r = Reference$ frequency = 4 MHz/Reference divider	N14 = N13 = N12 = = N0 = 0
СР	Charge-pump current-set bit	CP = 1
CP	60 μA (CP = 0), 280 μA (CP = 1)	CP = 1
T[2:0]	Test bits (see Table 4)	T[2:0] = 001
1[2.0]	Normal mode: T2 = 0, T1 = 0, T0 = 1/0	1[2:0] = 001
RSA, RSB	Reference divider ratio selection bits (see Table 5)	RSA = 0, RSB = 1
	Tuning amplifier control bit	
OS	Tuning voltage on (OS = 0) Tuning voltage off, high impedance (OS = 1)	OS = 0
	Band-switch control bits	
	BSn = 0: $Tr = OFF$ $BSn = 1$: $Tr = ON$	
	Band selection by BS1, BS2, BS4	
BS[4:1]	BS1(VL) BS2(VH) BS4(U)	BSn = 0
	1 0 0 VHF-LO X 1 0 VHF-HI X X 1 UHF	
Х	Don't care	

Table 3. Address Selection

MA1	MA0	VOLTAGE APPLIED ON AS INPUT
0	0	LOW: 0 V to 0.1 V _{CC}
0	1	MID2: open, or 0.2 V _{CC} to 0.3 V _{CC}
1	0	MID1: 0.4 V _{CC} to 0.6 V _{CC}
1	1	HIGH: 0.9 V _{CC} to V _{CC}

Table 4. Test Bits (1)

T2	T1	T0	DEVICE OPERATION	NOTE
0	0	0	Normal operation	
0	0	1	Normal operation	Default
0	1	X	Charge pump is off.	
1	1	0	Charge pump is sink.	
1	1	1	Charge pump is source.	
1	0	Х	Test mode	ADC not available

(1) Not used for other bit patterns

Table 5. Reference Divider Ratio

RSA	RSB	REFERENCE DIVIDER RATIO
X	0	640
0	1	1024
1	1	512

I^2C Read Mode (R/W = 1)

Table 6. Read Data Format

	MSB							LSB	
Address byte (ADB)	1	1	0	0	0	MA1	MA0	$R/\overline{W} = 1$	A ⁽¹⁾
Status byte (SB)	POR	FL	1	1	1	A2	A1	A0	1

(1) A = Acknowledge

Table 7. Read Data Symbol Description

SYMBOL	DESCRIPTION	DEFAULT		
MA[1:0]	Address-set bits (see Table 3)			
	Power-on-reset flag			
POR	POR set: Power on POR reset: End-of-data transmission procedure	POR = 1		
FL	In-lock flag			
rL .	PLL locked (FL = 1), PLL unlocked (FL = 0)			
A[2:0]	Digital data of ADC (see Table 8)			

Table 8. ADC Level

A2	A1	A0	VOLTAGE APPLIED ON ADC INPUT ⁽¹⁾
1	0	0	0.6 V _{CC} to V _{CC}
0	1	1	0.45 V _{CC} to 0.6 V _{CC}
0	1	0	0.3 V _{CC} to 0.45 V _{CC}
0	0	1	0.15 V _{CC} to 0.3 V _{CC}
0	0	0	0 V to 0.15 V _{CC}

(1) Accuracy is $0.03 \times V_{CC}$.

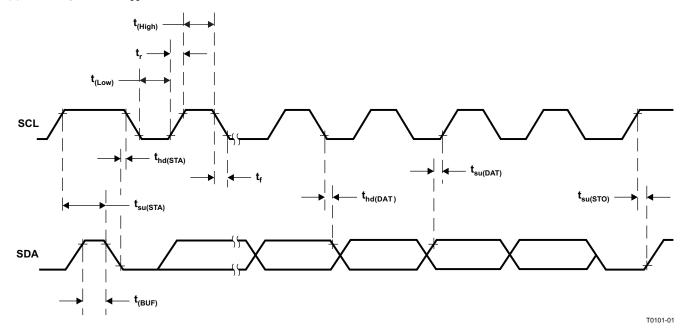
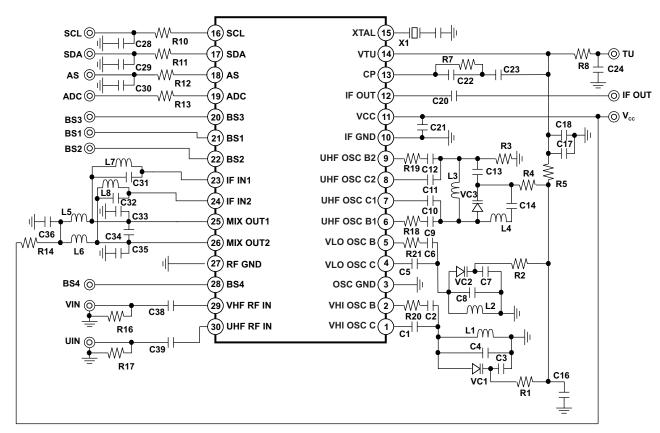



Figure 17. I²C Timing Chart

APPLICATION INFORMATION

NOTE: This application information is advisory and a performance check is required for actual application circuits. TI assumes no responsibility for the consequences of the use of this circuit, nor for any infringement of patent or patent rights of third parties that may result from its use.

Figure 18. Reference Measurement Circuit

APPLICATION INFORMATION (continued)

Component Values for Measurement Circuit

PART NAME	VALUE	PART NAME	VALUE	
C1	2 p	L1	φ2.4 mm 4T 0.4 mm	
C2	2 p	L2	φ3.0 mm 8T 0.32 mm	
C3	82 p	L3	φ3.0 mm 2T 0.4 mm	
C4	Open	L4	φ2.0 mm 3T 0.4 mm	
C5	2 p	L5	φ2.4 mm 16T 0.26 mm	
C6	2 p	L6	φ2.4 mm 16T 0.26 mm	
C7	47 p	L7	Open	
C8	3 p	L8	Open	
C9	1.5 p			
C10	1 p	R1	33 k	
C11	1 p	R2	33 k	
C12	1.5 p	R3	22 k	
C13	12 p	R4	33 k	
C14	100 p	R5	22 k	
C16	2.2 nF/50 V	R7	22 k	
C17	2.2 n/50 V	R8	22 k	
C18	2.2 n/50 V	R10	330	
C20	2.2 n	R11	330	
C21	4.7 n	R12	330	
C22	2.2 n	R13	Short	
C23	0.1 μ/50 V	R14	Short	
C24	2.2 n/50 V	R16	Open	
C27	68 p	R17	Open	
C28	Open	R18	20	
C29	Open	R19	20	
C30	Open	R20	20	
C31	Short			
C32	Short			
C33	Open	U1	SN761678B	
C34	22 pF			
C35	Open	VC1	1T363A	
C36	4.7 n	VC2	1T363A	
C38	2.2 n	VC3	1T363A	
C39	2.2 n			
		X1	4 MHz	

APPLICATION INFORMATION (CONTINUED)

Test Circuits

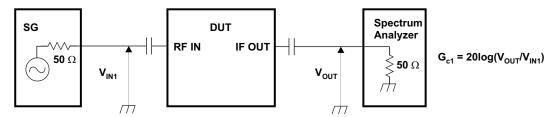


Figure 19. Measurement Circuit of Conversion Gain 1

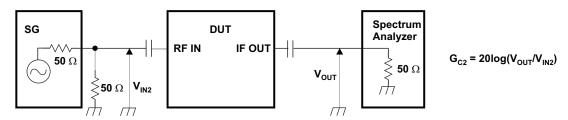


Figure 20. Measurement Circuit of Conversion Gain 2

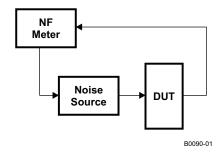


Figure 21. Noise-Figure Measurement Circuit

Figure 22. 1% Cross-Modulation-Distortion Measurement Circuit

TYPICAL CHARACTERISTICS

Band-Switch Driver Output Voltage (BS1-BS4)

BAND-SWITCH OUTPUT CURRENT

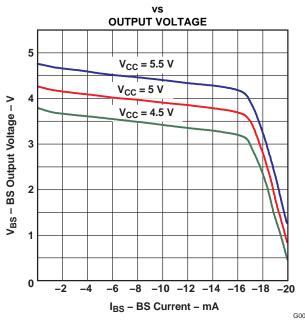


Figure 23. Band-Switch Driver Output Voltage

S-Parameter

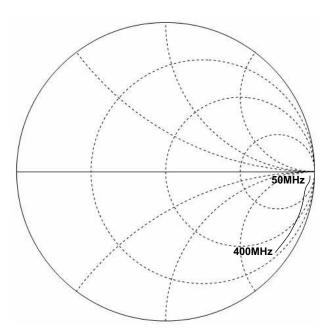


Figure 24. VHF Input

TYPICAL CHARACTERISTICS (continued)

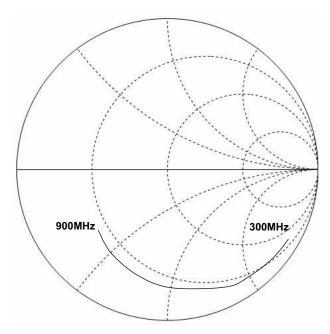


Figure 25. UHF Input

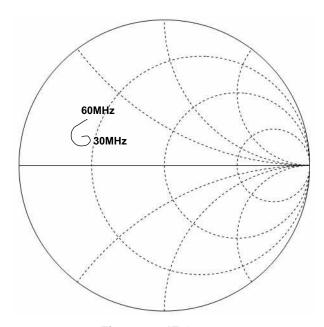


Figure 26. IF Output

PACKAGE OPTION ADDENDUM

30-Jul-2008

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins P	Package Qty	e Eco Plan ⁽²⁾	Lead/Ball Finish	MSL Peak Temp ⁽³⁾
SN761678BDBTR	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR
SN761678BDBTRG4	ACTIVE	TSSOP	DBT	30	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-2-260C-1 YEAR

(1) The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

(2) Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

(3) MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products Amplifiers amplifier.ti.com Data Converters dataconverter.ti.com DSP dsp.ti.com Clocks and Timers www.ti.com/clocks Interface interface.ti.com Logic logic.ti.com Power Mgmt power.ti.com Microcontrollers microcontroller.ti.com www.ti-rfid.com RF/IF and ZigBee® Solutions www.ti.com/lprf

Applications	
Audio	www.ti.com/audio
Automotive	www.ti.com/automotive
Broadband	www.ti.com/broadband
Digital Control	www.ti.com/digitalcontrol
Medical	www.ti.com/medical
Military	www.ti.com/military
Optical Networking	www.ti.com/opticalnetwork
Security	www.ti.com/security
Telephony	www.ti.com/telephony
Video & Imaging	www.ti.com/video
Wireless	www.ti.com/wireless

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2008, Texas Instruments Incorporated